Abstract

Cell cycle "Start" in budding yeast involves induction of a large battery of G1/S-regulated genes, coordinated with bud morphogenesis. It is unknown how intra-Start coherence of these events and inter-Start timing regularity are achieved. We developed quantitative time-lapse fluorescence microscopy on a multicell-cycle timescale, for following expression of unstable GFP under control of the G1 cyclin CLN2 promoter. Swi4, a major activator of the G1/S regulon, was required for a robustly coherent Start, as swi4 cells exhibited highly variable loss of cooccurrence of regular levels of CLN2pr-GFP expression with budding. In contrast, other known Start regulators Mbp1 and Cln3 are not needed for coherence but ensure regular timing of Start onset. The interval of nuclear retention of Whi5, a Swi4 repressor, largely accounts for wild-type mother-daughter asymmetry and for variable Start timing in cln3 mbp1 cells. Thus, multiple pathways may independently suppress qualitatively different kinds of noise at Start.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.