Abstract
We study coherence of electron transport through interacting quantum dots and discuss the relation of the coherent part to the flux-sensitive conductance for three different types of Aharonov-Bohm interferometers. Contributions to transport in first and second order in the intrinsic linewidth of the dot levels are addressed in detail. We predict an asymmetry of the interference signal around resonance peaks as a consequence of incoherence associated with spin-flip processes. Furthermore, we show by strict calculation that first-order contributions can be partially or even fully coherent. This contrasts with the sequential-tunneling picture which describes first-order transport as a sequence of incoherent processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.