Abstract
Conca and Varbaro (2020) [7] showed the equality of depth of a graded ideal and its initial ideal in a polynomial ring when the initial ideal is square-free. In this paper, we give some beautiful applications of this fact in the study of Cohen-Macaulay binomial edge ideals. We prove that for the characterization of Cohen-Macaulay binomial edge ideals, it is enough to consider only “biconnected graphs with some whisker attached” and this is done by investigating the initial ideals. We give several necessary conditions for a binomial edge ideal to be Cohen-Macaulay in terms of smaller graphs. Also, under a hypothesis, we give a sufficient condition for Cohen-Macaulayness of binomial edge ideals in terms of blocks of graphs. Moreover, we show that a graph with Cohen-Macaulay binomial edge ideal has girth less than 5 or equal to infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.