Abstract
In this work, we study the Betti numbers of pinched Veronese rings, by means of the reduced homology of squarefree divisor complexes. We characterize when these rings are Cohen–Macaulay and we study the shape of the Betti tables for the pinched Veronese in the two variables. As a byproduct we obtain information on the linearity of such rings. Moreover, in the last section we compute the canonical modules of the Veronese modules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.