Abstract
Let R=k[x1,…,xn], where k is a field. The path ideal (of length t ≥ 2) of a directed graph G is the monomial ideal, denoted by It(G), whose generators correspond to the directed paths of length t in G. Let Γ be a directed rooted tree. We characterize all such trees whose path ideals are unmixed and Cohen-Macaulay. Moreover, we show that R/It(Γ) is Gorenstein if and only if the Stanley-Reisner simplicial complex of It(Γ) is a matroid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.