Abstract

P strains of Drosophila melanogaster are characterized by the presence of both full-length and deletion derivatives of the transposable element P in their genome, and by their ability to induce the syndrome of hybrid dysgenesis among the progeny of certain intra-strain crosses, when introduced through the male parents. In contrast, strains belonging to the M' class, and which were also found to bear P element-homologous sequences, lack this ability and this has been attributed to the presence in the genome of most of these strains of a distinct class of deletion derivatives termed KP, which can suppress the action of functional P factors. Here we demonstrate that KP elements are present, next to full-length ones, in the genome of at least three strains which induce P-M-like dysgenic symptoms, including GD sterility. KP elements form the majority of the P-homologous sequences in the strains MR-h12, 23.5/CyL4 and the latter's derivative 23.5*/Cy. While the first one is a genuine P strain and the second one depicts a strong P cytotype, the third is a genuine M' strain. The hybrid dysgenesis induced by the two 23.5 MRF strains seems to be due, not primarily to the P elements, but to the action of hobo elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call