Abstract

For air traffic controllers, the extent of their cognitive workload can significantly impact their cognitive function and response time, consequently influencing their operational efficiency or even resulting in safety incidents. In order to enhance the accuracy and efficiency in determining the cognitive workload of air traffic controllers, a cognitive workload detection method for air traffic controllers based on mRMR and fewer EEG channels was proposed in this study. First of all, a set of features related to gamma waves was initially proposed; subsequently, an EEG feature evaluation method based on the mRMR algorithm was employed to pinpoint the most relevant indicators for the detection of the cognitive workload. Consequently, a model for the detection of the cognitive workload of controllers was developed, and it was optimized by filtering out channel combinations that exhibited higher sensitivity to the workload using the mRMR algorithm. The results demonstrate that the enhanced model achieves the accuracy and stability required for practical applications. Notably, in this study, only three EEG channels were employed to achieve the highly precise detection of the cognitive workload of controllers. This approach markedly increases the practicality of employing EEG equipment for the detection of the cognitive workload and streamlines the detection process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.