Abstract

Heterogeneous networks using a mix of macrocells and small cells are foreseen as one of the solutions to meet the ever increasing mobile traffic demand. Nevertheless, a massive deployment of small cell access points (SAPs) leads also to a considerable increase in energy consumption. Spurred by growing environmental awareness and the high price of energy, it is crucial to design energy efficient wireless systems for both macrocells and small cells. In this work, we evaluate a distributed sleep-mode strategy for cognitive SAPs and we analyze the trade-off between traffic offloading from the macrocell and the energy consumption of the small cells. Using tools from stochastic geometry, we define the user discovery performance of the SAP and derive the uplink capacity of the small cells located in the Voronoi cell of a macrocell base station, accounting for the uncertainties associated with random position, density, user activity, propagation channel, network interference generated by uncoordinated activity, and the sensing scheme. In addition, we define a fundamental limit on the interference density that allows robust detection and we elucidate the relation between energy efficiency and sensing time using large deviations theory. Through the formulation of several optimization problems, we propose a framework that yields design guidelines for energy efficient small cell networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call