Abstract

Vehicle-to-vehicle (V2V) communication applications face significant challenges to security and privacy since all types of possible breaches are common in connected and autonomous vehicles (CAVs) networks. As an inheritance from conventional wireless services, illegal eavesdropping is one of the main threats to Vehicle-to-vehicle (V2V) communications. In our work, the anti-eavesdropping scheme in CAVs networks is developed through the use of cognitive risk control (CRC)-based vehicular joint radar-communication (JRC) system. In particular, the supplement of off-board measurements acquired using V2V links to the perceptual information has presented the potential to enhance the traffic target positioning precision. Then, transmission power control is performed utilizing reinforcement learning, the result of which is determined by a task switcher. Based on the threat evaluation, a multi-armed bandit (MAB) problem is designed to implement the secret key selection procedure when it is needed. Numerical experiments have presented that the developed approach has anticipated performance in terms of some risk assessment indicators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.