Abstract
Cognitive reserve (CR) protects against cognitive decline, but whether CR influences the efficiency of cortical control of gait has not been reported. The current study addressed this important gap in the literature. Specifically, we determined the role of CR in moderating the efficiency of functional near-infrared spectroscopy (fNIRS)-derived oxygenated hemoglobin (HbO2) in the prefrontal cortex (PFC) assessed during active walking. We hypothesized that higher CR would be associated with more efficient brain activation patterns. Participants were 55 (mean age = 74.84; %female = 49.1) older adults who underwent the combined walking/fNIRS protocol and had magnetic resonance imaging data. We used an established dual-task walking paradigm that consisted of 3 task conditions: single-task walk (STW), single-task alpha (STA, cognitive task), and dual-task walk (DTW). Using the residual approach, CR was derived from a word-reading test score by removing variance accounted for by sociodemographic variables, tests of current cognitive functions, and a measure of structural brain integrity. CR moderated the change in fNIRS-derived HbO2 in the PFC across tasks. Higher CR was associated with smaller increases in fNIRS-derived HbO2 from the single tasks to dual-task walking (CR × DTW compared with STW: estimate = 0.183; p < .001; CR × DTW compared with STA: estimate = 0.257; p < .001). The moderation effect of CR remained significant when adjusting for multiple covariates and concurrent moderation effects of measures of gait performance, current cognitive functions, and structural integrity of the brain. The current study provided first evidence that higher CR was associated with better neural efficiency of walking in older adults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.