Abstract

Students viewed a computer animation depicting the process of lightning. In Experiment 1, they concurrently viewed on-screen text presented near the animation or far from the animation, or concurrently listened to a narration. In Experiment 2, they concurrently viewed on-screen text or listened to a narration, viewed on-screen text following or preceding the animation, or listened to a narration following or preceding the animation. Learning was measured by retention, transfer, and matching tests. Experiment 1 revealed a spatial-contiguity effect in which students learned better when visual and verbal materials were physically close. Both experiments revealed a modality effect in which students learned better when verbal input was presented auditorily as speech rather than visually as text. The results support 2 cognitive principles of multimedia learning. Technological advances have made possible the combination and coordination of verbal presentation modes (such as narration and on-screen text) with nonverbal presentation modes (such as graphics, video, animations, and environmental sounds) in just one device (the computer). These advances include multimedia environments, where students can be introduced to causal models of complex systems by the use of computer-generated animations (Park & Hopkins, 1993). However, despite its power to facilitate learning, multimedia has been developed on the basis of its technological capacity, and rarely is it used according to research-based principles (Kozma, 1991; Mayer, in press; Moore, Burton, & Myers, 1996). Instructional design of multimedia is still mostly based on the intuitive beliefs of designers rather than on empirical evidence (Park & Hannafin, 1994). The purpose of the present study is to contribute to multimedia learning theory by clarifying and testing two cognitive principles: the contiguity principle and the modality principle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.