Abstract

To determine how increased vocal loudness and reduced speech rate affect listeners' cognitive-perceptual processing of hypokinetic dysarthric speech associated with Parkinson's disease. Fifty-one healthy listener participants completed a speech perception experiment. Listeners repeated phrases produced by 5 individuals with dysarthria across habitual, loud, and slow speaking modes. Listeners were allocated to habitual ( n = 17), loud ( n = 17), or slow ( n = 17) experimental conditions. Transcripts derived from the phrase repetition task were coded for overall accuracy (i.e., intelligibility), and perceptual error analyses examined how these conditions affected listeners' phonemic mapping (i.e., syllable resemblance) and lexical segmentation (i.e., lexical boundary error analysis). Both speech conditions provided obvious perceptual benefits to listeners. Overall, transcript accuracy was highest in the slow condition. In the loud condition, however, improvement was evidenced across the experiment. An error analysis suggested that listeners in the loud condition prioritized acoustic-phonetic cues in their attempts to resolve the degraded signal, whereas those in the slow condition appeared to preferentially weight lexical stress cues. Increased loudness and reduced rate exhibited differential effects on listeners' perceptual processing of dysarthric speech. The current study highlights the insights that may be gained from a cognitive-perceptual approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.