Abstract

We propose a cognitive Internet of Things (IoT)–cloud-based smart healthcare framework, which communicates with smart devices, sensors, and other stakeholders in the healthcare environment; makes an intelligent decision based on a patient’s state; and provides timely, low-cost, and accessible healthcare services. As a case study, an EEG seizure detection method using deep learning is also proposed to access the feasibility of the cognitive IoT–cloud smart healthcare framework. In the proposed method, we use smart EEG sensors (apart from general healthcare smart sensors) to record and transmit EEG signals from epileptic patients. Thereafter, the cognitive framework makes a real-time decision on future activities and whether to send the data to the deep learning module. The proposed system uses the patient’s movements, gestures, and facial expressions to determine the patient’s state. Signal processing and seizure detection take place in the cloud, while signals are classified as seizure or non-seizure with a probability score. The results are transmitted to medical practitioners or other stakeholders who can monitor the patients and, in critical cases, make the appropriate decisions to help the patient. Experimental results show that the proposed model achieves an accuracy and sensitivity of 99.2 and 93.5%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.