Abstract

The interdisciplinary research area Cognitive Interaction Technology (CIT) aims to understand and support interactions between human users and other elements of socio-technical systems. Important reasons for the new interest in understanding CIT in sport psychology are the impressive development of cognitive robotics and advanced technologies such as virtual or augmented reality systems, cognitive glasses or neurotechnology settings. The present article outlines this area of research, addresses ethical issues, and presents an empirical study in the context of a new measurement and assessment system for training in karate. Recent advances in the field of cognitive assistance systems enabled largely automatized assessments of individual mental representation structures for action sequences, such as choreographed movement patterns in dance or martial arts. Empirical investigations with karate practitioners of different skill levels demonstrate that advanced software-based survey and algorithmic analysis procedures based on cognitive models generate individualized performance predictions for a movement sequence from the Kanku-dai kata (a pre-defined karate movement sequence), which correlated significantly not only with formal expertise (kyu/dan rank) but also with the actual likelihood of mistakes in action execution. This information could prospectively be used to define individual training goals for deliberate practice and incorporated into cognitive interaction technology to provide appropriate feedback. We argue that the development of cognitive interaction systems for sport should explicitly take ethical issues into consideration and present a particular developed engineering approach. The potential benefits of such an assistance system for intermediate and advanced practitioners include more effective and flexible practice, as well as supportive effects, and more flexible training schedules. Furthermore, we argue that researchers from the field of sport psychology can benefit from advances in technological systems that enhance the understanding of mental and motor control in skilled voluntary action.

Highlights

  • For over a decade numerous researchers from psychology, computer science, engineering, biology, linguistics, and sports science shaped the interdisciplinary field of Cognitive Interaction Technology (CIT) in order to establish the scientific and technological basics for creating systems that are capable of interacting at different levels of cognitive complexity (Ritter and Sagerer, 2009)

  • The CASPAi algorithm achieved the best results among the different algorithmic variants in terms of balanced accuracy, which represents the arithmetic mean of sensitivity and specificity values (Brodersen et al, 2010)

  • Deliberate practice has generally been accepted as an important factor for developing expertise, especially in sports, even though the specific extent of its impact on performance remains a subject of debate

Read more

Summary

Introduction

For over a decade numerous researchers from psychology, computer science, engineering, biology, linguistics, and sports science shaped the interdisciplinary field of Cognitive Interaction Technology (CIT) in order to establish the scientific and technological basics for creating systems that are capable of interacting at different levels of cognitive complexity (Ritter and Sagerer, 2009). CIT combines visualization, sonification, haptic, and augmented reality devices, motion capture, simulated agents in virtual worlds, and attentive user interfaces in novel ways (Ritter, 2010) This led to a broad range of technological advancements such as embodied anthropomorphic robots that can aid humans (Ritter, 2010; Wachsmuth et al, 2012), intelligent glasses for cognitive assistance (Essig et al, 2016), and smart environments systems with mobile service robots for ambient assisted living (Wrede et al, 2017)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.