Abstract

PurposeThe purpose of this study was to investigate the relationship between the lamina cribrosa (LC) thickness (LCT) as assessed using enhanced depth-imaging (EDI) optical coherence tomography (OCT) and cognitive function in primary open-angle glaucoma (POAG).MethodsThe study consisted of 105 POAG eyes and 23 nonglaucomatous control eyes that completed neuropsychological tests. The optic nerve heads of the patients were imaged using EDI-OCT. B-scan images were constructed in three dimensions using maximum intensity projection (MIP), and the LCT was measured using the thin-slab MIP images. A comprehensive battery consisting of 15 neuropsychological tests was used to evaluate cognitive function.ResultsPOAG eyes had smaller mean LCT as compared with control eyes (P < 0.001). Age and Mini Mental State Examination (MMSE) scores did not differ between the two groups. Linear regression analysis revealed that lower scores on the MMSE (P < 0.001), presence of glaucoma (P = 0.006), and a smaller global retinal nerve fiber layer thickness (P < 0.001) were independently associated with a smaller mean LCT. Davies’ test revealed a statistically significant breakpoint for the mean LCT (221.14 µm), below which a smaller MMSE score was significantly associated with a smaller mean LCT. In POAG eyes with a mean LCT smaller than the breakpoint (< 221.14 µm), not only the global cognition but also the visuospatial function and visual memory were worse than in those with a larger mean LCT (all P ≤ 0.003).ConclusionsImpairment of cognitive function was observed in patients with POAG with a thinner LC. The role of LC imaging as a potential biomarker to monitor cognitive impairment needs further investigation.Translational RelevanceLC thinning may reflect a shared mechanism of neurodegenerative diseases in the brain and optic nerve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.