Abstract

Wireless networks can be self-sustaining by harvesting energy from radio-frequency (RF) signals. Building on classic cognitive radio networks, we propose a novel method for network coexisting where mobiles from a secondary network, called secondary transmitters (STs), either harvest energy from transmissions by nearby transmitters from a primary network, called primary transmitters (PTs), or transmit information if PTs are sufficiently far away; STs store harvested energy in rechargeable batteries with finite capacity and use all available energy for subsequent transmission when batteries are fully charged. In this model, each PT is centered at a guard zone and a harvesting zone that are disks with given radiuses; a ST harvests energy if it lies in some harvesting zone, transmits fixed-power signals if it is outside all guard zones or else idles. Based on this model, the spatial throughput of the secondary network is maximized using a stochastic-geometry model where PTs and STs are modeled as independent homogeneous Poisson point processes (HPPPs), under the outage constraints for coexisting networks and obtained in a simple closed-form. It is observed from the result that the maximum secondary throughput decreases linearly with the growing PT density, and the optimal ST density is inversely proportional to the derived transmission probability for STs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call