Abstract

Vagal afferents are a crucial neuronal component of the gut-brain axis and mediate the information flow from the viscera to the central nervous system. Based on the findings provided by experiments involving vagus nerve stimulation, it has been suggested that vagal afferent signaling may influence various cognitive functions such as recognition memory and cognitive flexibility. Here, we examined this hypothesis using a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective abdominal vagal deafferentation method existing to date. We found that SDA did not affect working memory in a nonspatial alternation task, nor did it influence short-, intermediate-, and long-term object recognition memory. SDA did also not affect the acquisition of positively reinforced left-right discrimination learning, but it facilitated the subsequent reversal left-right discrimination learning. The SDA-induced effects on reversal learning emerged in the absence of concomitant changes in motivation towards the positive reinforcer, indicating selective effects on cognitive flexibility. Taken together, these findings suggest that the relative contribution of vagal afferent signaling to cognitive functions is limited. At the same time, our study demonstrates that cognitive flexibility, at least in the domains of positively reinforced learning, is subjected to visceral modulation through abdominal vagal afferents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call