Abstract
The cholinergic hypothesis states that cholinergic neurons of the basal forebrain nucleus basalis magnocellularis (nbm) that project to cortical and amygdalar targets play an important role in memory. Biochemical studies have shown that these target areas are differentially sensitive to different excitotoxins (e.g., ibotenate vs. quisqualate). This observation might explain the finding from many behavioural studies of memory that different excitotoxins affect memory differentially even though they produce about the same level of depletion of cholinergic markers in the cortex and similar cortical electrophysiological effects. Thus, the magnitude of mnemonic impairment might be related to the extent of damage to cholinergic projections to the amygdala more than to the extent of damage to corticopetal cholinergic projections. This explanation might similarly apply to the observation that the immunotoxin 192 IgG-saporin produces mild effects on memory when injected into the nbm. This is because it damages cholinergic neurons projecting to the cortex but not those projecting to the amygdala. Studies comparing the effects on memory of ibotenic acid vs. quisqualic acid lesions of the nbm are reviewed as are studies of the mnemonic effects of 192 IgG-saporin. Results support the cholinergic hypothesis and suggest that amygdalopetal cholinergic neurons of the nbm play an important role in the control of memory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.