Abstract
This study explores the cognitive load and learning outcomes associated with using large language models (LLMs) versus traditional search engines for information gathering during learning. A total of 91 university students were randomly assigned to either use ChatGPT3.5 or Google to research the socio-scientific issue of nanoparticles in sunscreen to derive valid recommendations and justifications. The study aimed to investigate potential differences in cognitive load, as well as the quality and homogeneity of the students' recommendations and justifications. Results indicated that students using LLMs experienced significantly lower cognitive load. However, despite this reduction, these students demonstrated lower-quality reasoning and argumentation in their final recommendations compared to those who used traditional search engines. Further, the homogeneity of the recommendations and justifications did not differ significantly between the two groups, suggesting that LLMs did not restrict the diversity of students’ perspectives. These findings highlight the nuanced implications of digital tools on learning, suggesting that while LLMs can decrease the cognitive burden associated with information gathering during a learning task, they may not promote deeper engagement with content necessary for high-quality learning per se.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.