Abstract

From an engineering point-of-view, cognitive control is inspired by the prefrontal cortex of the human brain; cognitive control may therefore be viewed as the overarching function of a cognitive dynamic system. In this paper, we describe a new way of thinking about cognitive control that embodies two basic components: learning and planning, both of which are based on two notions: 1) two-state model of the environment and the perceptor and 2) perception-action cycle, which is a distinctive characteristic of the cognitive dynamic system. Most importantly, it is shown that the cognitive control learning algorithm is a special form of Bellman's dynamic programming. Distinctive properties of the new algorithm include the following: 1) optimality of performance; 2) algorithmic convergence to optimal policy; and 3) linear law of complexity measured in terms of the number of actions taken by the cognitive controller on the environment. To validate these intrinsic properties of the algorithm, a computational experiment is presented, which involves a cognitive tracking radar that is known to closely mimic the visual brain. The experiment illustrates two different scenarios: 1) the impact of planning on learning curves of the new cognitive controller and 2) comparison of the learning curves of three different controllers, based on dynamic optimization, traditional \(Q\) -learning, and the new algorithm. The latter two algorithms are based on the two-state model, and they both involve the use of planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call