Abstract
This article examines algorithmic content moderation, using the moderation of violent extremist content as a specific case. In recent years, algorithms have increasingly been mobilized to perform essential moderation functions for online social media platforms such as Facebook, YouTube, and Twitter, including limiting the proliferation of extremist speech. Drawing on Katherine Hayles’ concept of “cognitive assemblages” and the Critical Security Studies literature, we show how algorithmic regulation operates within larger assemblages of humans and non-humans to influence the surveillance and regulation of information flows. We argue that the dynamics of algorithmic regulation are more liquid, cobbled together and distributed than it appears. It is characterized by a set of shifting human and machine entities, which mix traditional surveillance methods with more sophisticated tools, and whose linkages and interactions are transient. The processes that enable the consolidation of knowledge about risky profiles and contents are, therefore, collective and distributed among humans and machines. This allows us to argue that the cognitive assemblages involved in content moderation become a cobbled space of preemptive calculation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.