Abstract

PurposeThis is a continuation of Parts I and II of the paper. In this part it is suggested that microscopic particles behave similarly to macroscopic objects: Features of two entangled particles, having the same “dimension” (kind of feature), may interchange and migrate from one particle to the other while their wave function collapses. In the particular case of electrically charged particles, like an electron and a proton, the migrating features that are interchanged between the particles, may be the electrical charges (that have the same “dimension”). This implies that each atom of matter has some very small probability to be an atom of antimatter, and it may be annihilated if it collides with an atom of matter. The purpose of this study is to suggest how this hypothesis may be tested empirically.Design/methodology/approachThe cooler are the molecules of gases, the slower they are. Therefore, according to Heisenberg's principle of uncertainty, the probability that gaseous molecules will collide increases when the gas is cooled.FindingsWe may expect that when gases are cooled there is a higher than usual probability that gaseous molecules of matter and antimater will collide and will annihilate each other, emitting photons of gamma rays. Such findings has been reported by Molchadzki, but not explained. The same is true regarding other situations in which the probability of collisions of gaseous molecules is higher than the usual, like the colliding of gaseous molecule at the center of an imploding bubble of gas.Originality/valueIf a procedure that increases the number of collisions between gaseous molecules considerably will be developed, it may be that this procedure will be applicable for obtaining clean energy by annihilations of matter and antimatter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.