Abstract

Cognitive decline in Parkinson disease (PD) is a disabling and highly variable non-motor feature. While cholinergic systems degeneration is linked to cognitive impairments in PD, most prior research reported cross-sectional associations. We aimed to fill this gap by investigating whether baseline regional cerebral vesicular acetylcholine transporter ligand [ 18 F]-fluoroethoxybenzovesamicol ([ 18 F]-FEOBV) binding predicts longitudinal cognitive changes in mild to moderate, non-demented PD subjects. Seventy-five non-demented, mild-moderate PD subjects received baseline standardized cognitive evaluations and [ 18 F]-FEOBV PET imaging with repeat cognitive evaluations 2 years later. Participants were classified into four cognitive classes based on stability or change in cognition: Persistent normal (no MCI at baseline and follow-up), Persistent MCI, MCI conversion, and MCI reversion. Whole-brain voxel comparisons with normal controls, and voxel-based and cluster volume-of-interest correlation analyses with longitudinal cognitive changes were performed. Whole-brain voxel comparisons of each class with a matched control group revealed unique bi-directional differences in baseline regional [ 18 F]-FEOBV binding. Increased regional [ 18 F]-FEOBV binding in predominantly anterior cortical and sub-cortical regions was found in the persistent normal and MCI reversion groups. Whole-brain voxel correlation analysis between baseline [ 18 F]-FEOBV binding and two-year longitudinal percent changes in cognition identified a specific regional pattern of reduced posterior cortical, limbic and paralimbic [ 18 F]-FEOBV binding predictive of global cognitive declines and across five cognitive domains at two-year follow-ups. Cholinergic system changes correlate with varying cognitive trajectories in mild-moderate PD. Upregulation of cholinergic neurotransmission may be an important compensatory process in mild-moderate PD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.