Abstract

Currently, there is an urgent scientific problem of ensuring the effective implementation of the automatic spacecraft (AS) flight program, taking into account the material, energy and information resource limitations of onboard systems (OS). The consumption of OS resources largely depends on the synergistic phenomena that occur during intersystem interaction in the AS. By using these phenomena, it is possible to increase the efficiency of the use of existing resources, as well as to supplement them with new "synergistic" resources [1,2]. At the same time, synergistic phenomena can lead to premature development of the OS resource and unforeseen (non-calculated) failures and accidents [3]. For purposeful search and use of these synergistic phenomena, it is necessary to conduct a special study of the processes occurring on board. Research becomes possible only when moving from the system-cybernetic model of AS as a " black box "to a system-cybernetic model that provides" transparency "of AS as a" white box", which requires high accuracy and complexity of analysis of processes occurring on board [4]. This situation determines the urgency of developing new engineering techniques and modeling technologies. To create them, it is necessary to solve the problem of the initial stage of building models that describe in one form or another the engineering knowledge of OS development experts and flight control specialists [5]. The development of a universal method for solving the problem of the initial stage of modeling is significantly complicated due to the wide variety of OS, each of which has its own emergent and synergistic properties, which largely depend on the "non-clonability" of their elements [6,7]. 
 In order to simplify the modeling of real OS functioning processes, taking into account their specifics, it is proposed to carry out preliminary development of a formalized cognitively structured aggregate-flow metamodel ("model of models") of the AS flight control process, which contains information about potentially existing capabilities for controlling the state of vehicles in various conditions of implementation of nominal and abnormal processes. Creating a conceptual metamodel allows you to make the transition from the subject formalized model to the next stages of modeling-formal-mathematical and material-functional modeling, which take into account the individual characteristics of the processes on board the AS when controlling its flight. At the same time, the problems of overcoming the complexity of the metamodel, including its dimension, are solved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.