Abstract

The prefrontal cortex (PFC) and extended frontostriatal circuitry play a critical role in executive cognitive processes that guide goal-directed behavior. Dysregulation of frontostriatal-dependent cognition is implicated in a variety of cognitive/behavioral disorders, including addiction and attention deficit hyperactivity disorder (ADHD). Psychostimulants exert dose-dependent and opposing actions on frontostriatal cognitive function. Specifically, low and clinically-relevant doses improve, while higher doses associated with abuse and addiction impair, frontostriatal-dependent cognitive function. Frontostriatal cognition is supported by the coordinated activity of neurons across this circuit. To date, the neural coding mechanisms that support the diverse cognitive actions of psychostimulants are unclear. This represents a significant deficit in our understanding of the neurobiology of frontostriatal cognition and limits the development of novel treatments for frontostriatal cognitive impairment. The current studies examined the effects of cognition-enhancing and cognition-impairing doses of methylphenidate (MPH) on the spiking activity of dorsomedial PFC (dmPFC) and dorsomedial striatal (dmSTR) neurons in 17 male rats engaged in a working memory task. Across this frontostriatal circuit, we observed opposing actions of low- and high-dose MPH on the population-based representation of delay: low-dose strengthened, while high-dose weakened, representation of this event. MPH elicited a more complex pattern of actions on reward-related signaling, that were highly dose-, region- and neuron-dependent. These observations provide novel insight into the neurophysiological mechanisms that support the cognitive actions of psychostimulants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call