Abstract

The intimate relation between biology and cognition can be formally examined through statistical models constrained by the asymptotic limit theorems of communication theory, augmented by methods from statistical mechanics and nonequilibrium thermodynamics. Cognition, often involving submodules that act as information sources, is ubiquitous across the living state. Less metabolic free energy is consumed by permitting crosstalk between biological information sources than by isolating them, leading to evolutionary exaptations that assemble shifting, tunable cognitive arrays at multiple scales, and levels of organization to meet dynamic patterns of threat and opportunity. Cognition is thus necessary for life, but it is not sufficient: An organism represents a highly patterned outcome of path-dependent, blind, variation, selection, interaction, and chance extinction in the context of an adequate flow of free energy and an environment fit for development. Complex, interacting cognitive processes within an organism both record and instantiate those evolutionary and developmental trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.