Abstract
Large admissible perturbations (LEAP) is a general methodology, which solves redesign problems of complex structures with, among others, forced response amplitude constraints. In previous work, two LEAP algorithms, namely the incremental method (IM) and the direct method (DM), were developed. A powerful feature of LEAP is the general perturbation equations derived in terms of normal modes, the selection of which is a determinant factor for a successful redesign. The normal modes of a structure may be categorized as stretching, bending, torsional, and mixed modes and grouped into cognate spaces. In the context of redesign by LEAP, the physical interpretation of a mode-to-response cognate space lies in the fact that a mode from one space barely affects change in a mode from another space. Perturbation equations require computation of many perturbation terms corresponding to individual modes. Identifying modes with negligible contribution to the change in forced response amplitude eliminates a priori computation of numerous perturbation terms. Two methods of determining mode-to-response cognate spaces, one for IM and one for DM, are presented and compared. Trade-off between computational time and accuracy is assessed in order to provide practical guidelines to the designer. The developed LEAP redesign algorithms are applied to the redesign of a simple cantilever beam and a complex offshore tower.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Offshore Mechanics and Arctic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.