Abstract

This work presents the preparation and property characterization of a biomass gelatin (GA)-based aerogel. Halloysite nanotubes (HNTs) were used to improve the mechanical strength, pore size distribution, and thermal stability of the aerogel. Polyethyleneimine (PEI) and (3-glycidyloxypropyl)trimethoxysilane (GPTMS) were utilized to increase the interfacial interaction between HNTs and GA through chemical cross-linking. Green, sustainable, and low-cost composite aerogels were prepared by "cogel" and freeze-drying techniques. The experimental results show that the HNTs/GA composite aerogel has a low density (31.98-57.48 mg/cm3), a high porosity (>95%), a low thermal conductivity (31.85-40.16 mW m-1 K-1), and superior moldability. In addition, the mechanical strength and thermal insulation properties of the HNTs/GA composite aerogels with a "thorn"-like lamellar porous network structure are different in the axial direction versus the radial direction. The maximum compressive strength, maximum compressive modulus, and corresponding specific modulus in the axial direction were 1.81 MPa, 5.45 MPa, and 94.8 kN m kg-1, respectively. Therefore, the biomass/clay composite aerogel will be a sustainable and renewable functional material with high mechanical strength and thermal insulation properties, which is expected to further promote biomass and clay for high value utilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.