Abstract

Co-gasification of biomass and plastics was investigated in a 100 kW dual fluidized-bed pilot plant using four types of plastic material of different origins and soft wood pellets. The proportion of plastics was varied within a broad range to assess the interaction of the materials. The product gas composition was considerably influenced by co-gasification, whereas the changes were nonlinear. More CO and CO2 were measured in the product gas from co-gasification than would be expected from linear interpolation of mono-gasification of the materials. Less CH4 and C2H4 were formed, and the tar content in the product gas was considerably lower than presumed. With the generation of more product gas than expected, co-gasification of wood and plastic materials also had other beneficial effects. Because of the fuel mixtures, more radicals of different types were available that interacted with each other and with the fluidization steam, enhancing the reforming reactions. Wood char had a positive effect on polymer decomposition, steam reforming, and tar reduction. As a result of the more active splash zone during co-gasification of wood and plastics, contact between gas and bed material was enhanced, which is crucial for catalytic tar removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.