Abstract

In this study, we utilize a confocal ultrasound and phase-sensitive optical coherence elastography (OCE) system to assess age-related changes in biomechanical properties of the crystalline lens in intact rabbit eyes in situ. Lowamplitude elastic deformations, induced on the surface of the lens by localized acoustic radiation force, were measured using phase-sensitive OCT. The results demonstrate that the displacements induced in young rabbit lenses are significantly larger than those in the mature lenses. Temporal analyses of the elastic waves are also demonstrated significant difference between young and old lenses, indicating that the stiffness of lens increases with the age. These results demonstrate possibility of OCE for completely noninvasive analysis and quantification of lens biomechanical properties, which could be used in many clinical and basic science applications such as surgeries and studies on lens physiology and function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.