Abstract

Satellite-based communication technology has gained much attention in the past few years, where satellites play mainly the supplementary roles as relay devices to terrestrial communication networks. Unlike previous work, we treat the low-earth-orbit (LEO) satellites as secure data storage mediums. We focus on data acquisition from a LEO satellite based data storage system (also referred to as the LEO based datacenters), which has been considered as a promising and secure paradigm on data storage. Under the LEO based datacenter architecture, one fundamental challenge is to deal with energy-efficient downloading from space to ground while maintaining the system stability. In this paper, we aim to maximize the amount of data admitted while minimizing the energy consumption, when downloading files from LEO based datacenters to meet user demands. To this end, we first formulate a novel optimization problem and develop an online scheduling framework. We then devise a novel coflow-like “Join the first K-shortest Queues (JKQ)” based job-dispatch strategy, which can significantly lower backlogs of queues residing in LEO satellites, thereby improving the system stability. We also analyze the optimality of the proposed approach and system stability. We finally evaluate the performance of the proposed algorithm through conducting emulator based simulations, based on real-world LEO constellation and user demand traces. The simulation results show that the proposed algorithm can dramatically lower the queue backlogs and achieve high energy efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.