Abstract

Co-firing of biodiesel with natural gas, using a low NOx gas turbine combustor was investigated and compared with the equivalent natural gas and kerosene co-firing. The work was carried out at atmospheric pressure with 600K air inlet temperature and used an 8 vane radial swirler. Well mixed natural gas combustion was achieved using radially inward gas fuel injection through the wall of the swirler outlet throat. The biofuel was injected centrally using an eight hole radial fuel injector. This central fuel injector location forms a good pilot flame for natural gas low NOx combustion and was the only fuel injection location that biodiesel combustion could be stabilised. This was because central fuel injection was into the hot recirculating gases on the centreline that is a feature of radial swirl lean low NOX combustion. The biodiesel results were compared with equivalent tests for kerosene as the central injection fuel. Co-firing was investigated with a low level of main natural gas combustion that was held constant and the equivalence ratio was increased using the central injection of biodiesel or kerosene. Operation on kerosene with no acoustic problem was demonstrated up to Ø = 0.95. Three natural gas initial equivalence ratios were investigated with co-firing of liquid fuels, Ø = 0.18, 0.22 and 0.34. A key benefit of operating with hotter premixed combustion with natural gas was that the overall Ø at which stable low CO and HC operation could be achieved with biodiesel was extended to leaner overall Ø. The NOx emissions in this co-firing mode were remarkably low for relatively rich overall mixtures, where conventional single fuel main injection on natural gas gave higher NOx emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call