Abstract

The use of cattle manure (referred to as feedlot biomass, FB) as a fuel source has the potential to solve both waste disposal problems and reduce fossil fuel based CO 2 emissions. Previous attempts to utilize animal waste as a sole fuel source have met with only limited success due to the higher ash, higher moisture, and inconsistent properties of FB. Thus, a co-firing technology is proposed where FB is ground, mixed with coal, and then fired in existing pulverized coal fired boiler burner facilities. A research program was undertaken in order to determine: (1) FB fuel characteristics, (2) combustion characteristics when fired along with coal in a small scale 30 kW t (100,000 BTU/h) boiler burner facility, and (3) combustion and fouling characteristics when fired along with coal in a large pilot scale 150 kW t (500,000 BTU/h DOE–NETL boiler burner facility). These results are reported in three parts. Part I will present a methodology of fuel collection, fuel characteristics of the FB, its relation to ration fed, and change in fuel characteristics due to composting. It was found that FB has approximately half the heating value of coal, twice the volatile matter of coal, four times the N content of coal on heat basis, and due to soil contamination during collection, the ash content is almost 9–10 times that of low ash (5%) coal. The addition of <5% crop residues had little apparent effect on heating value. The main value of composting for combustion fuel would be to improve physical properties and to provide homogeneity. The energy potential of FB diminished with composting time and storage; however, the DAF HHV is almost constant for ration, FB-raw, partially composted and finished composted. The fuel N per GJ is considerably high compared to coal, which may result in increased NO x emissions. The N and S contents per GJ increase with composting of FB while the volatile ash oxide% decreases with composting. Based on heating values and alkaline oxides, partial composting seems preferable to a full composting cycle. Even though the percentage of alkaline oxides is reduced in the ash, the increased total ash percentage results in an increase of total alkaline oxides per unit mass of fuel. The adiabatic flame temperature for most of the biomass fuels can be empirically correlated with ash and moisture percentage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call