Abstract

To promote the utilization of hydrogen (H2) in existing gas turbines, dimethyl ether (DME) was used to co-fire with H2 in a model combustor. The swirl combustion characteristics of DME/H2 mixtures were measured under the varying H2 content up to 0.7. The results show that the flow velocity elevates as the H2 content increases, which is associated with the increased flame temperature. The OH level firstly increases and subsequently keeps nearly unchanged as the H2 content increases. Meanwhile, the OH area nonlinearly increases with the increasing H2 content. Moreover, the increasing H2 content induces almost linearly decreased lean blowout limit (LBO), increased NO emission, and intensified combustion acoustics. Furthermore, the combustion characteristics of the 0.46DME/0.54H2 mixture and CH4 with the same volumetric heat value were compared. The 0.46DME/0.54H2 flame displays lower LBO and higher NO emission than the CH4 flame, which mainly results from the higher reactivity of 0.46DME/0.54H2 mixture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call