Abstract
Let M be a non-zero finitely generated module over a commutative Noetherian local ring (R, 𝔪). In this paper we consider when the local cohomology modules are finitely generated. It is shown that if t ≥ 0 is an integer and [Formula: see text], then [Formula: see text] is not 𝔭-cofinite. Then we obtain a partial answer to a question raised by Huneke. Namely, if R is a complete local ring, then [Formula: see text] is finitely generated if and only if 0 ≤ n ∉ W, where [Formula: see text]. Also, we show that if J ⊆ I are 1-dimensional ideals of R, then [Formula: see text] is J-cominimax, and [Formula: see text] is finitely generated (resp., minimax) if and only if [Formula: see text] is finitely generated for all [Formula: see text] (resp., [Formula: see text]). Moreover, the concept of the J-cofiniteness dimension [Formula: see text] of M relative to I is introduced, and we explore an interrelation between [Formula: see text] and the filter depth of M in I. Finally, we show that if R is complete and dim M/IM ≠ 0, then [Formula: see text].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.