Abstract

Abstract The recalcitrant nature of lignocellulosic biomass entails pretreatment during which multiple byproducts (e.g., weak acids, furan derivatives, lignin-derived compounds) are generated. Such byproducts are generally inhibitory to fuel-producing microorganisms. In this study, lignin-derived monomers and acetate were co-fermented with glucose by Rhodococcus jostii RHA1 for lipid synthesis. The ability of R. jostii RHA1 to utilize acetate and representative lignin-derived monomers, namely p-coumaric acid, ferulic acid, 4-hydroxylic acid, and vanillic acid, were tested. The experimental results showed that R. jostii RHA1 utilized individual lignin monomers in varying degrees. The mixtures of inhibitory compounds at different levels showed higher toxicity than individual compounds, indicating synergistic effects of these monomers. When the mixture contained lower levels of glucose (5 g/L or below), adaptive-evolved (AE) R. jostii RHA1 utilized such inhibitory mixtures better for lipid synthesis. When the glucose levels were increased to 20 g/L or above, adaption evolution appeared to shorten the lag phase of co-fermentation but not necessarily enhance lipid production. This study demonstrated that R. jostii RHA1 was capable of utilizing commonly unfavorable carbon sources for lipid synthesis, which would also serve as a means to in situ detoxify inhibitory compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call