Abstract

We report the fabrication of nanoparticle-integrated spin-valve system and investigate its magnetic properties and magnetotransport behaviors. Using a modified interfacial self-assembly method, chemically synthesized CoFe2O4 nanoparticles were assembled as a Langmuir film on liquid/air interface. This film was further deposited on the sputtered thin films of bottom-pinned spin valve without additional treatment. The nanoparticle-assembled film with multilayer structure exhibits uniform and compact surfaces. Magnetization and magnetoresistance study show that the integrated nanoparticles give rise to a reduced interlayer coupling field and an increased magnetoresistance (MR) ratio in the spin valve. By analyzing the magnetic interaction between the nanoparticles and the spin valve, it is inferred that the magnetic stray field induced by the single-domain magnetic nanoparticles reduces the external magnetic field on the free layer, leading to the change of free-layer magnetization and the attenuation of int...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call