Abstract

A composite interlayer comprised of gadolinia doped ceria (GDC) and Co/Fe oxide was prepared and investigated for solid oxide electrolysis cell with yttrium stabilized zirconia (YSZ) electrolyte and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) anode. The interlayer was constructed of a base layer of GDC and a top layer of discrete Co3O4/FeCo2O4 particles. The presence of the GDC layer drastically alleviated the undesired reactions between LSCF and YSZ, and the presence of Co/Fe oxide led to further performance improvement. At 800°C and 45% humidity, the cell with 70% Co/Fe-GDC interlayer achieved 0.98A/cm2 at 1.18V, 14% higher than the cell without Co/Fe oxide. Electrochemical impedance spectroscopy (EIS) revealed that with higher Co/Fe content, both the ohmic resistance and the polarization resistance of the cell were reduced. It is suggested that Co/Fe oxide can react with the Sr species segregated from LSCF and Sr1-x(Co,Fe)O3-δ, a compound with high catalytic activity and electronic conductivity. The Sr-capturing ability of Co/Fe oxide in combination with the Sr-blocking ability of GDC layer can effectively suppress the undesired reaction between LSCF and YSZ, and consequently improve the cell performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call