Abstract

Photosystem I is one of the key players in the conversion of solar energy into chemical energy. While the chlorophyll dimer P(700) has long been identified as the primary electron donor, the components involved in the primary charge separation process in PSI remain undetermined. Here, we have studied the charge separation dynamics in Photosystem I trimers from Synechococcus elongatus by femtosecond vis-pump/mid-infrared-probe spectroscopy upon excitation at 700, 710, and 715 nm. Because of the high specificity of the infrared region for the redox state and small differences in the molecular structure of pigments, we were able to clearly identify specific marker bands indicating chlorophyll (Chl) oxidation. Magnitudes of chlorophyll cation signals are observed to increase faster than the time resolution of the experiment (~0.2 ps) upon both excitation conditions: 700 nm and selective red excitation. Two models, involving either ultrafast charge separation or charge transfer character of the red pigments in PSI, are discussed to explain this observation. A further increase in the magnitudes of cation signals on a subpicosecond time scale (0.8-1 ps) indicates the formation of the primary radical pair. Evolution in the cation region with time constants of 7 and 40 ps reveals the formation of the secondary radical pair, involving a secondary electron donor. Modeling of the data allows us to extract the spectra of the two radical pairs, which have IR signatures consistent with A+A₀- and P₇₀₀+A₁-. We conclude that the cofactor chlorophyll A acts as the primary donor in PSI. The existence of an equilibrium between the two radical pairs we interpret as concerted hole/electron transfer between the pairs of electron donors and acceptors, until after 40 ps, relaxation leads to a full population of the P₇₀₀+A₁. radical pair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call