Abstract

Galactose oxidase (GO; EC 1.1.3.9) is a monomeric 68 kDa enzyme that contains a single copper and an amino acid-derived cofactor. The mechanism of this radical enzyme has been widely studied by structural, spectroscopic, kinetic and mutational approaches and there is a reasonable understanding of the catalytic mechanism and activation by oxidation to generate the radical cofactor that resides on Tyr-272, one of the copper ligands. Biogenesis of this cofactor involves the post-translational, autocatalytic formation of a thioether cross-link between the active-site residues Cys-228 and Tyr-272. This process is closely linked to a peptide bond cleavage event that releases the N-terminal 17-amino-acid pro-peptide. We have shown using pro-enzyme purified in copper-free conditions that mature oxidized GO can be formed by an autocatalytic process upon addition of copper and oxygen. Structural comparison of pro-GO (GO with the prosequence present) with mature GO reveals overall structural similarity, but with some regions showing significant local differences in main chain position and some active-site-residue side chains differing significantly from their mature enzyme positions. These structural effects of the pro-peptide suggest that it may act as an intramolecular chaperone to provide an open active-site structure conducive to copper binding and chemistry associated with cofactor formation. Various models can be proposed to account for the formation of the thioether bond and oxidation to the radical state; however, the mechanism of prosequence cleavage remains unclear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.