Abstract

Object detection in remote-sensing images is a crucial task in the fields of Earth observation and computer vision. Despite impressive progress in modern remote-sensing object detectors, there are still three challenges to overcome: 1) complex background interference; 2) dense and cluttered arrangement of instances; and 3) large-scale variations. These challenges lead to two key deficiencies, namely, coarse features and coarse samples, which limit the performance of existing object detectors. To address these issues, in this article, a novel coarse-to-fine framework (CoF-Net) is proposed for object detection in remote-sensing imagery. CoF-Net mainly consists of two parallel branches, namely, coarse-to-fine feature adaptation (CoF-FA) and coarse-to-fine sample assignment (CoF-SA), which aim to progressively enhance feature representation and select stronger training samples, respectively. Specifically, CoF-FA smoothly refines the original coarse features into multispectral nonlocal fine features with discriminative spatial–spectral details and semantic relations. Meanwhile, CoF-SA dynamically considers samples from coarse to fine by progressively introducing geometric and classification constraints for sample assignment during training. Comprehensive experiments on three public datasets demonstrate the effectiveness and superiority of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.