Abstract

Drought is a primary environmental factor limiting maize production globally. Although transferring a single gene to maize can enhance drought resistance, maize response to water deficit requires further improvement to accommodate the steadily intensifying drought events worldwide. Here, we generated dual transgene lines simultaneously overexpressing two drought-resistant genes, ZmVPP1 (encoding a vacuolar-type H+ pyrophosphatase) and ZmNAC111 (encoding a NAM, ATAF, and CUC (NAC)-type transcription factor). Following drought stress, survival rates of the pyramided transgenic seedlings reached 62-66%, while wild-type and single transgene seedling survival rates were 23% and 37-42%, respectively. Maize seedlings co-expressing ZmVPP1 and ZmNAC111 exhibited higher photosynthesis rates, antioxidant enzyme activities, and root-shoot ratios than the wild type, and anthesis-silking intervals were shorter while grain yields were higher under water deficit conditions in field trials. Additionally, RNA-sequencing analysis confirmed that photosynthesis and stress-related metabolic processes were stimulated in the dual transgene plants under drought conditions. The findings in this work illustrate how high co-expression of different drought-related genes can reinforce drought resistance over that of individual transgene lines, providing a path for developing arid climate-adapted elite maize varieties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.