Abstract
Schizophrenia is a complex psychiatric disorder with genetic and phenotypic heterogeneity. Accumulating rare and genome-wide association study (GWAS) common risk variant information has yet to yield robust mechanistic insight. Leveraging large-scale gene deletion mouse phenomic data thus has potential to functionally interrogate and prioritize human disease genes. To this end, we applied a cross-species network-based approach to parse an extensive mouse gene set (188 genes) associated with disrupted prepulse inhibition (PPI), a Schizophrenia endophenotype. Integrating PPI genes with high-resolution mouse and human brain transcriptomic data, we identified functional and disease coherent co-expression modules through hierarchical clustering and weighted gene co-expression network analysis (WGCNA). In two modules, Schizophrenia risk and mouse PPI genes converged based on telencephalic patterning. The associated neuronal genes were highly expressed in cingulate cortex and hippocampus; implicated in synaptic function and neurotransmission and overlapped with the greatest proportion of rare variants. Concordant neuroanatomical patterning revealed novel core Schizophrenia-relevant genes consistent with the Omnigenic hypothesis of complex traits. Among other genes discussed, the developmental and post-synaptic scaffold TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 2) emerged from both networks as a novel core genetic driver of Schizophrenia altering PPI. Aspects of psychiatric disease comorbidity and phenotypic heterogeneity are also explored. Overall, this study provides a framework and galvanizes the value of mouse preclinical genetics and PPI to prioritize both existing and novel human Schizophrenia candidate genes as druggable targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.