Abstract

Syntheses of substance P, somatostatin, and calcitonin gene-related peptide in sensory neurons have been suggested to be regulated by neurotrophic factors retrogradely transported from target tissues. In this study, we re-examined this idea by investigating the coexpression of neurotrophin receptor (trk family proto-oncogene) messenger RNAs, and preprotachykinin-A (a precursor peptide of substance P), alpha-calcitonin gene-related peptide and somatostatin messenger RNAs in lumbar dorsal root ganglion neurons by means of in situ hybridization histochemistry in rats. Approximately 35-40%, 5% and 15-20% of sensory neurons displayed signals for trkA, trkB, and trkC messenger RNAs, respectively. Approximately 28% of dorsal root ganglion neurons were positive for preprotachykinin-A messenger RNA, and were divided into two groups; those labeled strongly and those labeled weakly by in situ hybridization. All the strongly-labeled neurons (78% of preprotachykinin-A-positive cells) expressed trkA messenger RNA at the same time, while the weakly-labeled neurons did not. Thirty-seven per cent of dorsal root ganglion neurons expressed alpha-calcitonin gene-related peptide messenger RNA, and most of these neurons (84%) also expressed trkA messenger RNA. No or few preprotachykinin-A messenger RNA- and/or alpha-calcitonin gene-related peptide messenger RNA-expressing neurons were also positive for trkB or trkC messenger RNAs. Nine per cent of dorsal root ganglion neurons expressed somatostatin messenger RNA, and these neurons lacked all three trk messenger RNAs. Furthermore, most of these neurons (about 90%) showed positive, albeit weak, signals for preprotachykinin-A and alpha-calcitonin gene-related peptide messenger RNAs. The results suggest that expression of preprotachykinin-A and alpha-calcitonin gene-related peptide messenger RNAs is mediated by nerve growth factor via trkA receptor but not by brain-derived neurotrophic factor or neurotrophin-3, and that somatostatin gene transcription is not regulated by any member of the neurotrophin family in rat sensory neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call