Abstract

Molecular chaperones are a ubiquitous family of cellular proteins that mediate the correct folding of other target polypeptides. In our previous study, the recombinant anti-BNP scFv, which has promising applications for diagnostic, prognostic, and therapeutic monitoring of heart failure, was expressed in the cytoplasm of Escherichia coli. However, when the anti-BNP scFv was expressed, 73.4% of expressed antibodies formed insoluble inclusion bodies. In this study, molecular chaperones were coexpressed with anti-BNP scFv with the goal of improving the production of functional anti-BNP in the cytoplasm of E. coli. Five sets of molecular chaperones were assessed for their effects on the production of active anti-BNP scFv. These sets included the following: trigger factor (TF); groES/groEL; groES/groEL/TF; dnaK/dnaJ/grpE; groES/groEL/dnaK/dnaJ/grpE. Of these chaperones, the coexpression of anti-BNP scFv with the groES/groEL chaperones encoded in plasmid pGro7 exhibited the most efficient functional expression of anti-BNP scFv as an active form. Coexpressed with the groES/groEL chaperones, 64.9% of the total anti-BNP scFv was produced in soluble form, which is 2.4 times higher scFv than that of anti-BNP scFv expressed without molecular chaperones, and the relative binding activity was 1.5-fold higher. The optimal concentration of L-arabinose required for induction of the groES/groEL chaperone set was determined to be 1.0mM and relative binding activity was 3.5 times higher compared with that of no induction with L-arabinose. In addition, soluble anti-BNP scFv was increased from 11.5 to 31.4μg/ml with optimized inducer concentration (1.0mM L-arabinose) for the coexpression of the groES/groEL chaperones. These results demonstrate that the functional expression of anti-BNP scFv can be improved by coexpression of molecular chaperones, as molecular chaperones can identify and help to refold improperly folded anti-BNP scFv.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.