Abstract

The differentiation of sensory neurons involves gene expression changes induced by specific transcription factors. Vomeronasal sensory neurons (VSNs) in the mouse vomeronasal organ (VNO) consist of two major subpopulations of neurons expressing vomeronasal 1 receptor (V1r)/Gαi2 or vomeronasal 2 receptor (V2r)/Gαo, which differentiate from a common neural progenitor. We previously demonstrated that the differentiation and survival of VSNs were inhibited in ATF5 transcription factor-deficient mice (Nakano et al. Cell Tissue Res 363:621-633, 2016). These defects were more prominent in V2r/Gαo-type than in V1r/Gαi2-type VSNs; however, the molecular mechanisms responsible for the differentiation of V2r/Gαo-type VSNs by ATF5 remain unclear. To identify a cofactor involved in ATF5-regulated VSN differentiation, we investigated the expression and function of CCAAT/enhancer-binding protein gamma (C/EBPγ, Cebpg), which is a major C/EBP family member expressed in the mouse VNO and dimerizes with ATF5. The results obtained showed that C/EBPγ mRNAs and proteins were broadly expressed in the postmitotic VSNs of the neonatal VNO, and their expression decreased by the second postnatal week. The C/EBPγ protein was expressed in the nuclei of approximately 70% of VSNs in the neonatal VNO, and 20% of the total VSNs co-expressed C/EBPγ and ATF5 proteins. We examined the trans-acting effects of C/EBPγ and ATF5 on V2r transcription and found that the co-expression of C/EBPγ and ATF5, but not C/EBPγ or ATF5 alone, increased Vmn2r66 promoter reporter activity via the C/EBP:ATF response element (CARE) in Neuro2a cells. These results suggest the role of C/EBPγ on ATF5-regulated VSN differentiation in early postnatal development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.