Abstract

BackgroundTropane alkaloids (TA) including anisodamine, anisodine, hyoscyamine and scopolamine are a group of important anticholinergic drugs with rapidly increasing market demand, so it is significant to improve TA production by biotechnological approaches. Putrescine N-methyltransferase (PMT) was considered as the first rate-limiting upstream enzyme while tropinone reductase I (TRI) was an important branch-controlling enzyme involved in TA biosynthesis. However, there is no report on simultaneous introduction of PMT and TRI genes into any TA-producing plant including Anisodus acutangulus (A. acutangulus), which is a Solanaceous perennial plant that is endemic to China and is an attractive resource plant for production of TA.ResultsIn this study, 21 AaPMT and AaTRI double gene transformed lines (PT lines), 9 AaPMT single gene transformed lines (P lines) and 5 AaTRI single gene transformed lines (T lines) were generated. RT-PCR and real-time fluorescence quantitative analysis results revealed that total AaPMT (AaPMT T) and total AaTRI (AaTRI T) gene transcripts in transgenic PT, P and T lines showed higher expression levels than native AaPMT (AaPMT E) and AaTRI (AaTRI E) gene transcripts. As compared to the control and single gene transformed lines (P or T lines), PT transgenic hairy root lines produced significantly higher levels of TA. The highest yield of TA was detected as 8.104 mg/g dw in line PT18, which was 8.66, 4.04, and 3.11-times higher than those of the control (0.935 mg/g dw), P3 (highest in P lines, 2.004 mg/g dw) and T12 (highest in T lines, 2.604 mg/g dw), respectively. All the tested samples were found to possess strong radical scavenging capacity, which were similar to control.ConclusionIn the present study, the co-expression of AaPMT and AaTRI genes in A. acutangulus hairy roots significantly improved the yields of TA and showed higher antioxidant activity than control because of higher total TA content, which is the first report on simultaneous introduction of PMT and TRI genes into TA-producing plant by biotechnological approaches.

Highlights

  • Tropane alkaloids (TA) including anisodamine, anisodine, hyoscyamine and scopolamine are a group of important anticholinergic drugs with rapidly increasing market demand, so it is significant to improve TA production by biotechnological approaches

  • Tropane alkaloids (TA) including anisodamine, anisodine, hyoscyamine and scopolamine are widely used as anticholinergic agents, which act on the parasympathetic nervous system and exclusively exist in Solanaceous plants such as Anisodus, Atropa, Datura, Duboisia, Hyoscyamus, and Scopolia [1,2,3]

  • The hairy root lines were subcultured for about 4 weeks in hormone-free, B5 solid medium with cefotaxime

Read more

Summary

Introduction

Tropane alkaloids (TA) including anisodamine, anisodine, hyoscyamine and scopolamine are a group of important anticholinergic drugs with rapidly increasing market demand, so it is significant to improve TA production by biotechnological approaches. Tropane alkaloids (TA) including anisodamine, anisodine, hyoscyamine and scopolamine are widely used as anticholinergic agents, which act on the parasympathetic nervous system and exclusively exist in Solanaceous plants such as Anisodus, Atropa, Datura, Duboisia, Hyoscyamus, and Scopolia [1,2,3]. It has been proven that the application of small scale jar fermenters for culturing hairy roots induced from several Solanaceous plants is a very prospective method for production of TA [9,10,11,12]. The natural amounts of anisodamine, anisodine and scopolamine are not very high in A. acutangulus These alkaloids are all important in phytomedicine with rapid increasing market demand. It is essential to improve their yields by biotechnological approaches. [17,18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call