Abstract
BackgroundMicrobial genome sequencing and analysis revealed the presence of abundant silent secondary metabolites biosynthetic gene clusters (BGCs) in streptomycetes. Activating these BGCs has great significance for discovering new compounds and novel biosynthetic pathways.ResultsIn this study, we found that ovmZ and ovmW homologs, a pair of interdependent transcriptional regulators coding genes, are widespread in actinobacteria and closely associated with the biosynthesis of secondary metabolites. Through co-overexpression of native ovmZ and ovmW in Streptomyces neyagawaensis NRRL B-3092, a silent type II polyketide synthase (PKS) gene cluster was activated to produce gephyromycin A, tetrangomycin and fridamycin E with the yields of 22.3 ± 8.0 mg/L, 4.8 ± 0.5 mg/L and 20.3 ± 4.1 mg/L respectively in the recombinant strain of S.ne/pZnWn. However, expression of either ovmZ or ovmW failed to activate this gene cluster. Interestingly, overexpression of the heterologous ovmZ and ovmW pair from oviedomycin BGC of S. ansochromogenes 7100 also led to awakening of this silent angucyclinone BGC in S. neyagawaensis.ConclusionA silent angucyclinone BGC was activated by overexpressing both ovmZ and ovmW in S. neyagawaensis. Due to the wide distribution of ovmZ and ovmW in the BGCs of actinobacteria, co-overexpression of ovmZ and ovmW could be a strategy for activating silent BGCs, thus stimulating the biosynthesis of secondary metabolites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.