Abstract

BackgroundOncogenic mechanisms in small-cell lung cancer remain poorly understood leaving this tumor with the worst prognosis among all lung cancers. Unlike other cancer types, sequencing genomic approaches have been of limited success in small-cell lung cancer, i.e., no mutated oncogenes with potential driver characteristics have emerged, as it is the case for activating mutations of epidermal growth factor receptor in non-small-cell lung cancer. Differential gene expression analysis has also produced SCLC signatures with limited application, since they are generally not robust across datasets. Nonetheless, additional genomic approaches are warranted, due to the increasing availability of suitable small-cell lung cancer datasets. Gene co-expression network approaches are a recent and promising avenue, since they have been successful in identifying gene modules that drive phenotypic traits in several biological systems, including other cancer types.ResultsWe derived an SCLC-specific classifier from weighted gene co-expression network analysis (WGCNA) of a lung cancer dataset. The classifier, termed SCLC-specific hub network (SSHN), robustly separates SCLC from other lung cancer types across multiple datasets and multiple platforms, including RNA-seq and shotgun proteomics. The classifier was also conserved in SCLC cell lines. SSHN is enriched for co-expressed signaling network hubs strongly associated with the SCLC phenotype. Twenty of these hubs are actionable kinases with oncogenic potential, among which spleen tyrosine kinase (SYK) exhibits one of the highest overall statistical associations to SCLC. In patient tissue microarrays and cell lines, SCLC can be separated into SYK-positive and -negative. SYK siRNA decreases proliferation rate and increases cell death of SYK-positive SCLC cell lines, suggesting a role for SYK as an oncogenic driver in a subset of SCLC.ConclusionsSCLC treatment has thus far been limited to chemotherapy and radiation. Our WGCNA analysis identifies SYK both as a candidate biomarker to stratify SCLC patients and as a potential therapeutic target. In summary, WGCNA represents an alternative strategy to large scale sequencing for the identification of potential oncogenic drivers, based on a systems view of signaling networks. This strategy is especially useful in cancer types where no actionable mutations have emerged.

Highlights

  • Oncogenic mechanisms in small-cell lung cancer remain poorly understood leaving this tumor with the worst prognosis among all lung cancers

  • Two modules were generated from the random dataset, turquoise and grey, indicating that weighted gene co-expression network analysis (WGCNA) module identification in our test dataset is driven by meaningful gene co-expression patterns (Additional file 1, Figure S1)

  • Identification and validation of a Small-cell lung cancer (SCLC)-specific hub network (SSHN) of co-expressed genes across genomic and proteomic platforms To identify and validate a network of co-expressed genes that is specific to SCLC, we focused on the blue module

Read more

Summary

Introduction

Oncogenic mechanisms in small-cell lung cancer remain poorly understood leaving this tumor with the worst prognosis among all lung cancers. Small-cell lung cancer (SCLC) represent up to 15 % of lung cancers and pose a major challenge as we are unable to diagnose it early, its most aggressive clinical behavior and the lack of lasting benefit from therapy. Patients presenting with this neuroendocrine tumor of the lung have a dismal 5% 5-year survival rate. Recent advances in genomic analysis of SCLC have identified potential driver mutations in SCLC [3,4,5], there remains an unmet need for approaches that can stratify SCLC patients and/or uncover viable molecular targets in SCLC

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call