Abstract

Cyclopiazonic acid (CPA), an emerging toxin, has been found in various foods such as corn, peanuts, and figs. Aspergillus flavus can produce CPA, leading to coexposure with highly toxic aflatoxin B1 (AFB1), but the mechanism of their combined action is not clear. In this study, cocultured hepatocyte spheroids were used as the evaluation model, and two concentration settings of isotoxicity and different toxicity ratios were used to investigate the combined toxic effects. Metabolomics was subsequently used to analyze the potential mechanisms underlying the effects of their exposure. AFB1 and CPA might exhibit stronger cytotoxicity, with significant combined effects on mitochondrial morphology, activity, and reactive oxygen levels. The gene expression analysis revealed that the overexpression of AKT genes could mitigate the combined effects of AFB1 and CPA to some extent. Metabolomics analysis indicated that AFB1 and CPA significantly downregulated the metabolism of l-aspartate and antioxidant substances (e.g., penicillamine, myricetin, and ethanolamine). The pathway enrichment analysis also revealed a large impact on amino acid metabolism, likely affecting intracellular redox homeostasis. In addition, the presence of CPA affects intracellular glucose metabolism and lipid metabolism pathways. This study suggested a direction for future research on relevant toxic pathways and provided possible ideas for inhibiting or mitigating toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.